1 Introduction..5

1.1 Prerequisites & Assumptions..5

1.1.1 Exchange Server 2010...5

1.1.2 Array Networks APV Appliance..5

1.2 Introduction to Exchange Server 2010...6

1.2.1 Exchange Server 2010 Architecture..6

1.2.2 Exchange Server 2010 Load Balancing Requirements..7

1.3 APV Series Application Delivery Controller (ADC) Benefits...7

1.4 Deployment for Exchange Server 2010 Roles...8

1.5 Array Networks Solution for Exchange Server 2010 Deployments...10

1.6 Verification Tools..10

1.7 APV Configuration Summary..11

1.8 Preconditions..11

2 Configuring APV for Outlook Web App...13

2.1 Configuration Steps..13

2.1.1 Create the Outlook Web App Service Health Check (Optional)..13

2.1.2 Create an Outlook Web App Real Service..14

2.1.3 Create the Outlook Web App Service Group..16

2.1.4 Create the Outlook Web App Virtual Service..18

2.1.5 Enable Outlook Web App SSL Offloading...20

2.1.6 Enable Outlook Web App Rewrite/Redirect..23

3 Configuring APV for Outlook Anywhere...27

3.1 Configuration Steps..27

3.1.1 Create Outlook Anywhere Service Health Check...27

3.1.2 Create Outlook Anywhere Real Service...28

3.1.3 Create the Outlook Anywhere Service Group..28

3.1.4 Create Outlook Anywhere Virtual Service..29

3.1.5 Enable Outlook Anywhere SSL Offloading ...30

3.1.6 Complete Mail Configurations on the Client..31

3.1.7 OWA/OA Single Virtual Service Support...31

4 Configuring the APV Appliance for ActiveSync..32

4.1 Configuration Steps..32
4.1.1 Create ActiveSync Service Health Check ... 32
4.1.2 Create ActiveSync Real Service ... 33
4.1.3 Create ActiveSync Service Group ... 33
4.1.4 Create ActiveSync Virtual Service .. 34
4.1.5 Enable ActiveSync SSL Offloading ... 35
4.1.6 Misc – Change TCP Idle Timeout .. 36

5 Configuring the APV Appliance for RPC Client Access ... 37

5.1 Configuration Steps ... 37
5.1.1 Create RPC Client Access Service Health Check .. 37
5.1.2 Create RPC Client Access Real Service ... 37
5.1.3 Create RPC Client Access Service Group .. 38
5.1.4 Create RPC Client Access Virtual Service .. 39

6 Configuring the APV Appliance for POP3 .. 42

6.1 Configuration Steps ... 42
6.1.1 Create POP3 Service Health Check .. 42
6.1.2 Create POP3 Real Service ... 42
6.1.3 Create POP3 Service Group .. 43
6.1.4 Create POP3 Virtual Service .. 43
6.1.5 Enable POP3 SSL Offloading .. 44

7 Configuring the APV Appliance for IMAP4 .. 46

7.1 Configuration Steps ... 46
7.1.1 Create IMAP4 Service Health Check ... 46
7.1.2 Create IMAP4 Real Service ... 46
7.1.3 Create IMAP4 Service Group ... 47
7.1.4 Create Secure IMAP4 Virtual Service ... 47
7.1.5 Enable IMAP4 SSL Offloading ... 48

8 Configuring the APV Appliance for SMTP (Edge Transport) ... 50

8.1 Configuration Steps ... 50
8.1.1 Create SMTP (Edge Transport) Service Health Check .. 50
8.1.2 Create SMTP (Edge Transport) Real Service ... 50
8.1.3 Create SMTP (Edge Transport) Service Group ... 51
8.1.4 Create SMTP (Edge Transport) Virtual Service ... 52
8.1.5 Enable SMTP (Edge Transport) SSL Offloading .. 53
8.1.6 Misc SMTP Outbound Support ... 53

9 Configuring the APV Appliance for Link Redundancy Using LLB ... 55

9.1 Configuration Steps ... 55
 9.1.1 Add additional port for WAN-2 access ... 55
 9.1.2 Add Duplicate Virtual Service for WAN 2 access ... 56
 9.1.3 Create LLB Links information .. 57
 9.1.4 Create LLB DNS record for inbound traffic ... 58

10 Configuring the APV Appliance for Exchange 2010 Site Resilience Using GSLB 60

10.1 Fault Tolerance Configuration .. 61
10.2 Configuration Steps ... 61
 10.2.1 Define GSLB/SDNS Members .. 61
 10.2.2 Creating GSLB Records ... 61
 10.2.3 GSLB/SDNS Disaster Recovery Site Location .. 62
 10.2.4 Creating a DR Group with DNS domain name .. 63
 10.2.5 Setup GSLB/SDNS with BIND 9 ... 64
 10.2.6 GSLB/SDNS DR Deployment Verification .. 65
 10.2.7 Log Information .. 67

11 Summary ... 70

Appendix I .. 71
1 Introduction

1.1 Prerequisites & Assumptions

1.1.1 Exchange Server 2010

This document is written with the assumption that you are familiar with Microsoft Exchange Server 2010 products. For more information on planning and deploying the Exchange Server 2010 please reference the appropriate documentation at:

1.1.2 Array Networks APV Appliance

The APV appliance must be running version ArrayOS TM 8.x or later. For more information on deploying the APV appliance please refer to the ArrayOS TM Web UI Guide which is included in the product CD or accessible through the product Web user interface.

We assume that the APV appliance is already installed in the network with management IP, interface IP, VLANs and default gateway configured.

Learn about your Exchange Server 2010 deployment in your network and note down VLAN information, IP addresses, and port numbers for various Client Access Servers (CAS) and Edge Transport Servers (ETS) and their roles. You will need them for configuring virtual sites and load balancing policies on the APV appliance.
1.2 Introduction to Exchange Server 2010

The Exchange Server 2010 is designed to provide users with the freedom to securely access all of their communications—email, voice mail, instant messaging, and more—from virtually any platform, Web-browser or device regardless of where they are.

1.2.1 Exchange Server 2010 Architecture

The Exchange Server 2010 architecture consists of different server roles:

- **Client Access Server**: This is the server that receives mail requests from remote and internal users from a variety of end user devices.

- **Edge Transport Server**: This is the mail routing server that typically sits at the perimeter of the topology and routes mail into and out of the Exchange Server 2010 environment.

- **Mailbox Server**: This server hosts mailboxes and public folders.

- **Unified Messaging Server**: This is the server that connects a Private Branch Exchange (PBX) system to Exchange 2010.

- **Hub Transport Server**: This is the mail routing server that routes mail within the Exchange organization.

Figure 1-1 Exchange Server 2010 Architecture
1.2.2 Exchange Server 2010 Load Balancing Requirements

Microsoft recommends a hardware load balancer for the purposes of incorporating high availability, site resiliency, scalability and security to the Exchange Server environment. Also, due to various Exchange Server roles and services, session persistence support on the load balancer is an important requirement.

1.3 APV Series Application Delivery Controller (ADC) Benefits

The Array Networks APV Series delivers all required functions for optimizing application delivery for Exchange Server 2010 environments, such as Layer 4-7 server load balancing, high availability, SSL acceleration and offloading, DDoS protection, TCP connection multiplexing, caching and compression – all in a single, easy-to-manage appliance.

Availability & Scalability

The APV’s server load balancing ensures 99.999% uptime for Exchange Server 2010 deployments. Customers can scale their Exchange environment to meet capacity and performance needs with APV server load balancers.

Site Resilience

The APV’s global server load balancing directs traffic away from failed data centers and intelligently distributes services between sites based on proximity, language, capacity, load and response times for maximum performance and availability.

ISP Link Availability

The APV’s link load balancing with advanced link failover and bandwidth management optimizes the availability, security, cost and performance of Exchange Server 2010 deployments across multiple WAN connections.

SSL Offloading

The APV appliance offloads 1024-bit and 2048-bit SSL encryption/decryption from Exchange 2010 Servers to improve performance and reduce the number of Exchange 2010 servers required to support high volume secure mail processing.

TCP Connection Multiplexing

The APV appliance multiplexes several client TCP connections into fewer Exchange Server 2010 TCP connections for increase throughput and performance. The APV appliance also reuses existing server connections.

Session Persistence

The APV appliance performs session persistence for Exchange Server 2010 user traffic and ensures that users are directed to same servers for the duration of their session.
Cache Offload

The APV appliance serves frequently requested content from cache for increased performance and scales the capacity of the Exchange 2010 Server environment.

HTTP Compression

The APV appliance compresses and delivers Exchange Server 2010 mail attachments and messages over LAN and WAN networks.

Network and Server Protection

The APV appliance protects Exchange Server 2010 components (servers and services) from malicious network and server attacks like DDoS attacks, SYN floods, TCP port scans, UDP floods and UDP port scans, etc.

1.4 Deployment for Exchange Server 2010 Roles

Exchange Server 2010 has two main roles when front ending end-users in the datacenter: the Client Access Server role and the Edge Transport server role.

The Client Access Server role accepts connections to Exchange 2010 from different clients, such as, but not limited to, Microsoft Outlook.

The five Client Access modes are:

- **Outlook Web App (OWA)** – access your email from any Web browser
- **Outlook Anywhere** – access your email from the Internet using Microsoft Outlook Messaging API (MAPI) over HTTP
- **ActiveSync** – synchronize e-mail between your mobile phone and Exchange 2010
- **Remote Procedure Call (RPC) Client Access** – access your email via Microsoft Outlook MAPI
- **POP3/IMAP4** – access your email from standard email clients

Other Client Access mode services:

- **Exchange Web Services (EWS)** – offers a Web services API
- **Autodiscovery** – simplifies users’ profile configuration
- **Offline Address Book (OAB) distribution** – OAB access via Web-based distribution for Outlook clients

The Edge Transport server role performs anti-spam and antivirus filtering, and applies messaging and security policies to messages in transport in and out of datacenter.

- **Simple Mail Transfer Protocol (SMTP)** – Routes mail into and out of the Exchange Server 2010 environment
This guide gives you step-by-step procedures for configuring the APV appliance to optimize each mode.
1.5 Array Networks Solution for Exchange Server 2010 Deployments

![Diagram showing Array Networks Load Balancing Solution for Exchange 2010](image)

Figure 1-2 Array Networks Load Balancing Solution for Exchange 2010

1.6 Verification Tools

To validate Exchange 2010 and the APV deployment, Microsoft provides tools to generate simulated Exchange workloads. The following tools are recommended:

- **Exchange Server Load Generator 2010**

 The Load Generator (LoadGen) tool is designed to produce a simulated client workload against a test Exchange deployment. LoadGen is capable of simulating Microsoft Office Outlook 2003 (online and cached), Outlook 2007 (online and cached), and POP3, IMAP4, SMTP, ActiveSync, and Outlook Web App client activity.

 For Outlook Local Users:

 - **Exchange Remote Connectivity Analyzer**

 Microsoft provides the online Exchange Remote Connectivity Analyzer for Exchange customers to validate Internet access.
1.7 APV Configuration Summary

The following table shows the APV configuration information used for Virtual Services and Real Services.

| Application/Service | Virtual Service | | Real Service | | | | Affinity | | Health Check |
|---------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| | Protocol | Port | Protocol | Port | | | | |
| OWA | HTTPS | 443 | HTTP | 80 | Cookie | HTTP |
| Outlook Anywhere | HTTPS | 443 | HTTP | 80 | None | HTTP |
| ActiveSync | HTTPS | 443 | HTTP | 80 | None | HTTP |
| POP3 | POP3-S | 995 | POP3 | 110 | None | TCP |
| IMAP | IMAP4-S | 993 | TCP | 143 | None | TCP |
| SMTP | TCP | 25 | TCP | 25 | None | TCP |
| RPC Client Access | TCP | 135, Port range| TCP | any | Client IP | PING+ Additional |

1.8 Preconditions

For interworking between the APV appliance and the client, make certain that you have imported the root certificate, which should be already obtained, of the Exchange Server 2010 to the client.

To import the root certificate of the Exchange Server 2010 to the client, do as follows:

1. On the client, go to **Start -> Run...**. Enter “certmgr.msc”. The following screen is displayed.
2. Right-click **Trusted Root Certification Authorities** -> **All Tasks** -> **Import.** Import the certificate according to **Certificate Import Wizard.**
2 Configuring APV for Outlook Web App

Outlook Web App allows authorized users to securely access their Exchange mailboxes through a Web browser. By using APV load balancers/traffic managers in front of Outlook Web App servers, you gain the following high-availability and improved user experience benefits:

- The APV appliance can load balance and monitor application availability ensuring high-availability across multiple Outlook Web App servers.
- The APV appliance provides SSL offloading, and content caching/compression features that improve client performance and reduces server load.
- The APV appliance can transparently redirect HTTP to HTTPS for client requests.
- The APV appliance can transparently rewrite and redirect from HTTP to HTTPS for server response.
- The APV appliance can alleviate security concerns, such as DDoS/Spike.

OWA setup also can serve Exchange Control Panel (ECP) service.

2.1 Configuration Steps

2.1.1 Create the Outlook Web App Service Health Check (Optional)

Make certain you are in **Config** mode and have selected the feature **Real Services** from the sidebar [a]. The configuration window will display two tabs [b], **Real Services** and **Health Check Setting**.

![Figure 2-1 Add Real Service](image)
Optional: For a better OWA application service Health Check, a simple HTTP content health check can be better than a TCP/ICMP health check for service availability:

1. Click on the "Health Check Setting" tab [b], a new window will display.
2. Select “3 HEAD / HTTP/1.1\n\n” [see figure below].
3. Input the fields relating to the Response String.
4. In our example we need to input "GET /OWA/cas.cfm HTTP/1.1\nHost: owa.domain.com\n\n".
5. Select “3 200 OK”.
6. Input the fields relating to the Response String. In our example we need to input "SERVICE IS UP!".
7. Finish the Health Check Setting by clicking "SAVE CHANGES".

![Figure 2-2 Customize OWA Health Check Setting](image)

Equivalent CLI Configuration:

```
health request 3 "GET /OWA/cas.cfm HTTP/1.1\nHost: owa.domain.com\r\n\n" health response 3 "SERVICE IS UP!"
```

Note: The “cas.cfm” is (an optional faked) Web page to help monitor CAS OWA application availability. You can use any Web page and check its returned content for the application status.

2.1.2 Create an Outlook Web App Real Service

Real Services are the three CAS servers. Add each CAS server with its name, IP/port and protocol information as a Real Service using the following steps:

1. Select the action link “Add Real Service Entry”. The configuration window will present a new screen for SLB REAL SERVICES CONFIGURATION.
2. The “Add Real Service Entry” screen is for you to configure real servers. In our example, we enter “owa-cas-1” as the Real Service Name. Select HTTP as the Real Service type and enter IP addresses 10.10.10.11 and port 80.

3. Select the HTTP health check type for the real service and configure the related parameters for the health check. Notice the parameter fields may vary with different health check types. Make certain you have set the "Health Up Limit" and “Health Down Limit” to 1. This indicates how many times for application test fail/success to declare the Real Service is “Down” or “Up”.

4. Make certain you select the “GET /OWA/ HTTP/1.1
Host: owa.domain.com
200 OK”.

5. Finish the creation of the real service and its health check configuration by clicking “Save” on the desired action link.

Follow the same steps: add “owa-cas-2” and “owa-cas-3” CAS servers as OWA real services.

Technical Notes:

Enable this Service: Check Box

This check box works to enable or disable the Real Service. If disabled, APV will not dispatch new traffic to the Real Service.

Connection Limit: 1000

Sets max connections to the real service. This setting helps with application stability without overloading the server or application. Increase the number if server is capable of handling greater loads.
2.1.3 Create the Outlook Web App Service Group

Outlook Web App Server Affinity

The OWA client needs affinity to the same Client Access Server; “insert cookie” (automatically added by the APV) will be used as the persistent method and “RR” as the first choice method for requests without the “insert cookie” (first login requests).

Make certain you are in Config mode and select “Groups” from the sidebar[a]. The configuration window will display two tabs [b] Groups and Groups Setting.

Equivalent CLI Configuration:

```
slb real http "owa-cas-1" 10.10.10.11 80 1000 http 1 1
slb real http "owa-cas-2" 10.10.10.12 80 1000 http 1 1
slb real http "owa-cas-3" 10.10.10.13 80 1000 http 1 1
health server "owa-cas-1" 3 3
health server "owa-cas-2" 3 3
health server "owa-cas-3" 3 3
```

1. Input the group name **owa_ic** [a]. Select the “insert cookie” group method by selecting from the pull down menu [b]. Depending on which method is selected, certain parameter fields will change, appear, or disappear. Insert a random cookie.
name. In our example we insert “nfmohbgjx” [c]. Select the “Round Robin”
group method by selecting from the pull down menu [d] and make certain to insert
“1” in path flag [e]. After making configurations on those parameter fields, click on
the action link “Add” [f]. The newly created “owa_ic” will be displayed in the sort
ready table below [g]. Choose “owa_ic” in the table and double click on it or click
on the action link “Edit” [h]. A new configuration page will be displayed.

![Figure 2-6 Add Group for OWA](image)

2. You can modify the group method and relevant configurations in the area [a].
 Depending on which method is selected, certain parameter fields will change,
appear, or disappear.

3. Under the “GROUP MEMBERS” section, assign the configured real services owa-
cas-1, owa-cas-2, and owa-cas-3 to the newly created groups by using the pull
down menu “Eligible Reals” [b]. Then, click on the “Add” action link [d] and the
assigned real services “exchange_owa1” and “exchange_owa2” will appear in the
display window [e].

4. Also at this page, there is a display window showing the current running statistics of
 the particular group [f].
2.1.4 Create the Outlook Web App Virtual Service

The next step is to create the OWA Virtual Service for external OWA clients to access. On the APV appliance, a Virtual Service is defined by a Virtual IP/Port and the protocol. External client OWA requests will be terminated on it and the APV appliance will load balance the requests to different OWA Real Services.

Figure 2-7 Add OWA Group Members

Equivalent CLI Configuration:

```
slb group method "owa-ic" ic "apv-owa" 1 rr 10
slb group member "owa-ic" "owa-cas-1" 1 0
slb group member "owa-ic" "owa-cas-2" 1 0
slb group member "owa-ic" "owa-cas-3" 10
```
Make certain you are in the Config mode and have selected the feature link Virtual Services from the sidebar [a]. The configuration ADD VIRTUAL SERVICE window will display four tabs [b]. The Virtual Services page is displayed by default.

Figure 2-8 Creating a Virtual Service

1. Enter “exchange_owa_virtual” [a] for the Virtual Service Name. Use the check box to enable the virtual service [b]. Select the virtual service type http from the selector [c]. Set the virtual service IP and port 80 [d]. Use the check box to enable ARP [e]. Set the maximum number of open connections per virtual service [f]. Depending on which type of virtual service is specified, certain parameter fields will appear, change or disappear. Click on the desired action link [g] to add a virtual service. Once a virtual service has been added, it will be displayed within the table. Select a virtual service in the table [h] and double click on it or click on the action link “Edit” [i]. A new configuration window will present a new series of tabs for completing virtual services configuration.

Figure 2-9 Add Virtual Service for OWA (HTTPS)
2. Select the pre-created owa_ic and set it to be the icookie policy. Insert the policy name “owa_ic_policy” and give 100 as the Policy Precedence. Click the “Add” button to save this Virtual Service-SLB Group association. The owa_ic will be shown in the ASSOCIATE GROUPS list.

3. Select the pre-created owa_ic and set it to be the default policy. Click the add button to save this Virtual Service-SLB Group association. The owa_ic will be shown in the ASSOCIATE GROUPS list.

2.1.5 Enable Outlook Web App SSL Offloading

The APV appliance supports SSL acceleration for secured client access, offloads Exchange CAS SSL processing overhead (CPU/Memory) and provides centralized certificate management. Furthermore, the APV appliance can be enabled to perform normal traffic management functions, such as cookie affinity, content routing, caching/compression and connection pooling acceleration functions, which cannot be supported with encrypted traffic.

To enable SSL offloading for SLB Virtual Service:

1. Associate the SSL Virtual Host to the SLB Virtual Service
2. If the SSL Virtual Host is not fully configured:
 a. Generate CSR (and Private Key)
 b. Import Cert/Key (see example below)
3. Start the SSL Virtual Host

Following are the detailed configuration steps:

1. Selected the feature link SSL from the sidebar. Click the Virtual Host tab; click the Add button to enter the SSL Virtual Host window.

2. Add the SSL Virtual Host, enter “exchange-ssl” as the SSL Virtual Host Name and select “owa-ssl” from the SLB Virtual Service dropdown. Then click Save.

 ![Figure 2-12 Bind SSL Virtual Host to a SLB Virtual Service](image)

 Note: Multiple SLB Virtual Services can be assigned to the same SSL Virtual Host. Up to 64 SLB Virtual Services can share the same SSL Virtual Host.

 If SSL Virtual Host “exchange-ssl” already has a proper private key and certificate, jump to step 6 to start the SSL Virtual Host. Otherwise, import the certificate and private key for the SSL Virtual Host “exchange-ssl”.

 3. Select “exchange-ssl” to Edit.

 ![Figure 2-13 Select & Edit New SSL Virtual Host](image)

 4. To import the Exchange Server Certificate and Key, select “Import Cert/Key” and type in the local disk file for Local File, or Manual Input it.
5. To enable the SSL service, select “Virtual Host Settings”. Select the “Enable SSL” check box. The SSL will start.

6. Optional: For better security: Click Virtual Host Setting and Advanced Settings, advanced SSL features. Disable weak ciphers “EXP-RC4-MD%” and “EXP-DES-CBC-SHA” so that no client can use those weak ciphers.
2.1.6 Enable Outlook Web App Rewrite/Redirect

Caching/Compression are “on” by default for Virtual Services with type HTTP and HTTPS. OWA Virtual Service uses type HTTPS so that caching/compression are “on” by default. You can select the check box to enable or disable cache and compression for a Virtual Service.

A: HTTP redirect to HTTPS

A user may type http://... (unsecured) rather than https://... to access the secured OWA service. To make this more user friendly, the APV appliance can be configured to auto redirect http requests to https.

To configure the HTTP redirection:

1. Add a new Virtual Service “owa” for HTTP and virtual service port “80”.

Equivalent CLI Configuration:

```
ssl import key "exchange-ssl"
ssl import certificate "exchange-ssl"
ssl host virtual "exchange-ssl" "owa-ssl"
ssl settings ciphersuite "exchange-ssl" "RC4-MD5:RC4-SHA:DES-CBC3-SHA:AES128-SHA:AES256-SHA:DES-CBC-SHA:!SSLv2:"
ssl settings protocol "exchange-ssl" "SSLv3:TLSv1:TLSv11:TLSv12"
ssl start "exchange-ssl"
```
Create a HTTP Virtual Service for Redirect

2. Select the Virtual Service “owa” for Editing. Check the box for “Redirect All HTTP Requests to HTTPS”.

Enable HTTP to HTTPS Redirect

For OWA access, users may omit the /owa directory which is needed by CAS to access the /owa directory. The APV appliance can be configured auto insert /owa if it is missing from users’ OWA requests.

To configure Request Rewrite:

1. Select the Virtual Service “owa-ssl” for editing. Click the URL Rewrite tab. Enter ‘AddOWA’ for the Policy Name. “100” for Priority. “owa.exchange.a.com” as the host name (the external host name issued by client). Enter ^/$ for Path Regex. “^” means start of the URI. “$” means end of URI. In between use only one “/”. Enter /owa for “Path Replacement”.

Equivalent CLI Configuration:

```
slb virtual http "owa" 10.2.40.112 80 arp 0
http redirect https "owa"
```
C: Enable Compression (cache optional)

On the APV appliance, HTTP compression and/or caching are available for HTTP or HTTPS types of Virtual Services. Compression can reduce object size so less data is transmitted. Smaller/fewer data reduces transmission time over slow links, and thus makes OWA go faster. Also, it can help fit into monthly data quotas, and may reduce charges if data is metered.

To enable compression for the unit, select Compression under PROXY from the left pane. Make sure the “Enable Compression” check box is checked.

Equivalent CLI Configuration:

```
http rewrite request url "owa-ssl" "AddOWA" 100 "owa.exchange.a.com" "^/$" "owa.exchange.a.com" "/owa"
```

To enable compression (and others capabilities) for “owa-ssl” Virtual Service, from SERVER LOAD BALANCE, select Virtual Services on the left pane. Select “owa-ssl” from the VIRTUAL SERVICE LIST. Under the “owa-ssl” VIRTUAL SERVICE SETTING, Compression, Cache and many other parameters are configurable. After you have entered or selected, do not forget to click “Save” to make the change(s) take effect.
3 Configuring APV for Outlook Anywhere

Exchange Outlook Anywhere for Exchange 2010 allows you to use Outlook 2007 and Outlook 2003 clients to connect to your Exchange Server environment over the Internet, using HTTPS to encapsulate RPC traffic.

Note: Encapsulate RPC traffic is incompatible with normal HTTP traffic.

By using the APV appliance in front of the Outlook Anywhere server farm, you gain High Availability and improved user experience benefits:

- Load balance and monitor application availability to ensure high-availability across multiple Outlook Anywhere servers.
- SSL offload for improved client performance, reduced server load and simplified SSL Certificate management.
- Alleviate security concerns, such as DDoS/Spike.

3.1 Configuration Steps

3.1.1 Create Outlook Anywhere Service Health Check

The built-in HTTP health check can be used to check the following RPC link that is needed for EOA RPC and without any credential input, the server will return 401 (or 403).

http://domain.com/rpc/rpcproxy.dll

To customize the Health Check, select **Real Services, Health Check Setting**. Edit Request Index “8” and Response Index “8”. Enter “GET /rpc/rpcproxy.dll HTTP/1.1
\nHost: domain.com\n\n” for the Request String. Add “200 OK” for the Response String.
3.1.2 Create Outlook Anywhere Real Service

This is the same as adding OWA Real Services into the unit. Add 3 Real Services “eoa-cas-1”, “eoa-cas-2” and “eoa-cas-3” to the unit.

Note: The real service type is TCP, however, the Health Check Type is HTTP and Index 8 is used for both Request and Response.

![Image of Create Real Service for Outlook Anywhere](image)

Figure 3-1 Create Real Service for Outlook Anywhere

Equivalent CLI Configuration:

```
slb real tcp "eoa-cas-1" 10.10.10.11 443 1000 http 3 3
slb real tcp "eoa-cas-2" 10.10.10.12 443 1000 http 3 3
slb real tcp "eoa-cas-3" 10.10.10.13 443 1000 http 3 3

health request 8 "GET /rpc/rpcproxy.dll HTTP/1.1
r
n/Host: domain.com\r\n\r"
health response 8 "200 OK"

health server "eoa-cas-1" 8 8
health server "eoa-cas-2" 8 8
health server "eoa-cas-3" 8 8
```

3.1.3 Create the Outlook Anywhere Service Group

Outlook Anywhere Server Affinity

The Outlook Anywhere client does not support cookies. The “chi” (Constant Hash IP) method can be used for server affinity. “chi” will also provide server persistency in the event of APV failover.

However, “chi” may not be effective for load balancing when inbound connections come through a small number of NAT devices. In that case, the RPCHTTP LBS component in Windows may be used to handle RPCHTTP connection affinity – see Microsoft TechNet for further information.

Selected the feature link Groups from the sidebar. ADD GROUP window will be displayed.
1. Enter **group-OutlookAnywhere** as the OutlookAnywhere SLB Group Name. Select **Least Connections** for the Group Method. Click **Add**. **group-OutlookAnywhere** should be displayed within the GROUPS LIST.

2. The GROUPS LIST table contains all SLB Groups in the unit. Select **group-OutlookAnywhere** and click **Edit** (or double click it) to enter the individual Group configuration window.

 Figure 3-2 Create SLB Group for Outlook Anywhere

3. Under the GROUP MEMBERS window, select Eligible Reals **eoa-cas-1**, **eoa-cas-2** and **eoa-cas-3**, and click the **Add** button to add to the group one by one.

 Figure 3-3 Add Real Service to SLB Group

 Equivalent CLI Configuration:

   ```
   slb group method "group-OutlookAnywhere" lc
   slb group member "group-OutlookAnywhere" "eoa-cas-1" 1 0
   slb group member "group-OutlookAnywhere" "eoa-cas-2" 1 0
   slb group member "group-OutlookAnywhere" "eoa-cas-3" 1 0
   ```

3.1.4 Create Outlook Anywhere Virtual Service

1. Click the **Virtual Services** link from the left function list. Enter **eoa-ssl** for the Virtual Service Name. Select **HTTPS** as the Virtual Service Type. Enter IP **10.2.40.114** and Port **443**.

 Figure 3-4 Create Virtual Service for Outlook Anywhere
2. From the Virtual Service List, select **eoa-ssl** for **Edit**. Under ASSOCIATE GROUP, select “**g-OutlookAnywhere**” for Eligible Vlink Or Group and “**default**” for the Eligible policy. Then click the **Add** button.

![Figure 3-5 Associate with g-OutlookAnywhere Group with default policy](image.png)

Equivalent CLI Configuration:

```
slb virtual https "eoa-ssl" 10.2.40.114 443 arp 0
```

Note:

1. To configure SSL offloading for Outlook Anywhere please refer to the following link from Microsoft TechNet.
2. Because the access of an OA client requires a domain name, you need to configure the DNS to resolve the virtual IP into the domain name of the OA client. The following is an example of the mapping between IPs and domain names.

 - 172.16.85.151 mail.exchange2010.com
 - 172.16.85.151 mail-01.exchange2010.com
 - 172.16.85.151 mail-02.exchange2010.com

 mail.exchange2010.com is the domain name and mail-01.exchange2010.com and mail-02.exchange2010.com are appliance names.

3.1.5 Enable Outlook Anywhere SSL Offloading

To enable SSL offloading for SLB Virtual Service “**eoa-ssl**”, an SSL Virtual Host needs to be added. Go to SSL-> Virtual Hosts -> Add. Enter “**exchange-ssl**” SSL Virtual Host and select “**eoa-ssl**” SLB Virtual Service. Click **Save**.
3-6 Add SSL Virtual Host for Outlook Anywhere Virtual Service

As the “exchange-ssl” SSL Virtual Host already had its Key/Certificate imported and is Enabled (running), no other setup is needed. Clients will be able to access eoa-ssl Virtual Service now.

Equivalent CLI Configuration:

```
ssl host virtual "exchange-ssl" "eoa-ssl"
```

Note:

The Key/Certificate of the real server should be imported. For how to import the Key/Certificate, see 4 in section 2.1.5.

3.1.6 Complete Mail Configurations on the Client

For mail configurations on the client, see Appendix I.

3.1.7 OWA/OA Single Virtual Service Support

From ArrayOS TM 8.3.0.30 and ArrayOS TM 8.3.1.1, HTTP/HTTPS virtual services are supported for the Outlook Anywhere (OA) service. Therefore, the same HTTP/HTTPS virtual service can be used for both Outlook Web App (OWA) and OA services. For example, if a virtual service, with a protocol type of HTTPS, is configured for the OWA service in Chapter 2, this virtual service can be shared by the OA service in Chapter 3. In this way, the deployment complexity is greatly reduced.
4 Configuring the APV Appliance for ActiveSync

Exchange ActiveSync is a Microsoft Exchange synchronization protocol that is optimized to work together with high-latency and low-bandwidth networks. The protocol, based on HTTP and XML, enables mobile phone users to access corporate information on the Microsoft Exchange environment. Exchange ActiveSync enables mobile phone users to access their e-mail, calendar, contacts and tasks, and to continue to be able to access this information while they are working offline.

By deploying the APV appliance in front of ActiveSync-enabled servers you gain better security for TCP SYNC and DDoS attacks, and the advantages of intelligent load balancing, SSL/TLS offloading, and ease of certificate management.

As with Outlook Anywhere, many of the APV appliance configuration procedures for ActiveSync are nearly identical to the procedures for Outlook Web App. Since ActiveSync’s main clients are Mobile Phone Applications, cookies may not be supported. Also, since ActiveSync application information transaction is single connection based, multiple-connection affinity to the same server may not be required.

Normal Round Robin or Least Connection Load Balancing should be efficient enough to support ActiveSync. Furthermore, since an ActiveSync event may take an extended time for new events to happen, connection timeouts need to be extended.

4.1 Configuration Steps

4.1.1 Create ActiveSync Service Health Check

ActiveSync service application health check can be done by sending an HTTP request to the virtual directory and checking the response content. For more accurate application health check, the following request string “HEAD /Microsoft-Server-ActiveSync/ HTTP/1.1
Host: mail.domain.com” can be sent. Also, depending on your CAS server setup, the response string “401 Authorization Required” can be checked.

!Figure 4-1 Configure Health Check
4.1.2 Create ActiveSync Real Service

This is the same as adding OWA Real Services. Add Real Services “eas-cas-1” to the unit. Select HTTP as the Health Check Type. Select Index 6 as Request Index and Response Index. Index 6 will check the “/Microsoft-Server-ActiveSync” virtual directory. Set up “eas-cas-2” and “eas-cas-3” in the same way.

![Figure 4-2 Creating ActiveSync Real Services](image)

Equivalent CLI Configuration:

```
slb real http "eas-cas-1" 10.10.10.11 80 1000 http 3 3
slb real http "eas-cas-2" 10.10.10.12 80 1000 http 3 3
slb real http "eas-cas-3" 10.10.10.13 80 1000 http 3 3

health server "eas-cas-1" 6 6
health server "eas-cas-2" 6 6
health server "eas-cas-3" 6 6
```

4.1.3 Create ActiveSync Service Group

Selected the feature link Groups from the sidebar. ADD GROUP window will be displayed.

1. Enter “group-eas” as the ActiveSync SLB Group Name. Select “Least Connections” for the Group Method. Click “Add”. “group-eas” should be displayed within the GROUPS LIST.

![Figure 4-3 Add Group for Exchange ActiveSync](image)
2. The GROUPS LIST table contains all SLB Groups in the unit. Select “group-eas” and click “Edit” (or double click) to enter the individual Group configuration window. Under GROUP MEMBERS window select Eligible Reals “eas-cas-1”, “eas-cas-2” and “eas-cas-3” and click Add button to add to the group one by one.

![GROUP MEMBERS](image)

Figure 4-4 Add Member to ActiveSync Group

Equivalent CLI Configuration:

```
slb group method "group-eas" ic "apv-eas" 0 lc 10
slb group member "group-eas" "eas-cas-1" 1 0
slb group member "group-eas" "eas-cas-2" 1 0
slb group member "group-eas" "eas-cas-3" 1 0
```

4.1.4 Create ActiveSync Virtual Service

Selected the feature link Virtual Services from the sidebar. ADD VIRTUAL SERVICE window will be displayed.

1. Enter “eas-ssl” for Virtual Service Name. Select HTTPS for Virtual Service Type. Enter Virtual Service IP “10.2.40.113” and Port “443”. Click Add. “eas-ssl” will be displayed within the VIRTUAL SERVICE LIST table.

2. The VIRTUAL SERVICE LIST table contains Virtual Services in the unit. Select “eas-ssl” and click “Edit” (or double click) to enter the individual Virtual Service configuration window.
3. ASSOCIATE GROUPS: For Virtual Service eas-ssl, select group-eas from Eligible Groups and select icookie from Eligible Policies. Enter “eas-policy-1” for Policy Name and 100 for Policy Precedence. Click Add. Do the similar for “default” Eligible Policy.

4.1.5 Enable ActiveSync SSL Offloading

To enable SSL for SLB Virtual Service “eas-ssl”, an SSL Virtual Host needs to be added. Go to SSL-> Virtual Hosts -> Add. Enter “exchange-ssl” SSL Virtual Host and select “eas-ssl” SLB Virtual Service. Click Save.
As the "exchange-ssl" SSL Virtual Host already had its Key/Certificate imported and is Enabled (running), no other setup is needed. Clients will be able to access the eas-ssl Virtual Service now.

Note: For more information on configuring SSL offloading for Exchange 2010 please refer to the following link from Microsoft TechNet:

4.1.6 Misc – Change TCP Idle Timeout

ActiveSync uses Direct Push technology that issues a long-lived HTTPS request to Exchange for any mailbox change for the next x-minutes. For optimal Direct Push performance, Microsoft recommends increasing the TCP time-out to 30 minutes. The APV appliance default TCP idle timeout is 300 seconds (5 minutes, for whole unit). Each Virtual Service can have its own TCP timeout.

For more information on ActiveSync and Direct Push, see the Microsoft documentation.

To configure TCP timeout for an individual Virtual Service, click Virtual Services from the left function list, and double click "eas-ssl" from the VIRTUAL SERVICE LIST for edit. Enter "1800" (30 minutes) for TCP Timeout.

Figure 4-7 Change TCP timeout to 30 minutes

Equivalent CLI Configuration:

```bash
slb timeout "eas-ssl" 1800
```
5 Configuring the APV Appliance for RPC Client Access

RPC Client Access service was introduced with Exchange Server 2010 to support Microsoft Outlook clients using MAPI RPC to access the mailbox through the CAS server, rather than directly to the mailbox servers. This change applies business logic to clients more consistently and provides a better client experience when CAS failover occurs.

The APV appliance can load balance incoming MAPI connections to multiple Client Access servers. With L4 port range SLB, multiple port ranges can be specified for client access, which helps security control. Also, additional health checks can be added for better RPC Client Access service availability check. Unlike most of the other Client Access server roles, the RPC Client Access service does not allow APV SSL offloading.

5.1 Configuration Steps

5.1.1 Create RPC Client Access Service Health Check

The RPC service will be configured as raw TCP service so that the basic TCP health check will be used. Also, as the RPC service uses multiple ports, an Additional Health Check for the main port (135) will be added to check after the RPC Client Access Real Service is defined.

5.1.2 Create RPC Client Access Real Service

Create a Real Service for each Exchange RPC server. Enter “rpc-cas-1” as the Real Service Name. Enter the IP address and “0” for Real Service Port. The port 0 means the APV will initiate the connection with the same port that client is destined to. Select “icmp” as Health Check Type. Repeat the process for RPC Real Services “rpc-cas-2” and “rpc-cas-3”.

![Figure 5-1 Add RPC Client Access Real Service](image)

Add an additional health for the RPC Client Access service. Select the Real Service and click “Additional Health Check” tab. Enter the IP address and port 135 for the TCP health check. This means that ICPM+ TCP worked, and APV will decide the RPC service is OK.
5.1.3 Create RPC Client Access Service Group

RPC Client Access Server Affinity

For RPC Client Access Server Affinity the recommended persistence method is by Client IP. We will use the CHI (Constant Hash IP) method which also provides server affinity in the event of a APV failover.

Equivalent CLI Configuration:

```bash
slb real tcp "rpc-cas-1" 10.10.10.11 0 1000 icmp 3 3
slb real health "rpc-cas-1" 10.10.10.11 135 tcp 3 3
slb real tcp "rpc-cas-2" 10.10.10.11 0 1000 icmp 3 3
slb real health "rpc-cas-2" 10.10.10.12 135 tcp 3 3
slb real tcp "rpc-cas-3" 10.10.10.11 0 1000 icmp 3 3
slb real health "rpc-cas-3" 10.10.10.13 135 tcp 3 3
```

Add Real Service `rpc-cas-1`, `rpc-cas-2` and `rpc-cas-3` to the SLB Group “group-rpc.”
5.1.4 Create RPC Client Access Virtual Service

Select “Virtual Services” from left function list. In ADD VIRTUAL SERVICE, enter a Virtual Service Name “rpc”, the Virtual Service IP “10.10.40.112”. Enter “0” for Virtual Service Port. Port “0” means all ports. Then click “Add” to create the “rpc” Virtual Service.

Equivalent CLI Configuration:

```
slb group method "group-rpc" chi 32
slb group member "group-rpc" "rpc-cas-1" 1 0
slb group member "group-rpc" "rpc-cas-2" 1 0
slb group member "group-rpc" "rpc-cas-3" 1 0
```

Technical Note for RPC Ports:

An IP port is an opening through which information can pass from the originating computer to the destination computer. By default, the dynamic port range for outgoing connections on Windows Server 2008 R2 is 49152 to 65535. Exchange 2010 Client Access changes this range to 6005 through 59530. The range was expanded to provide sufficient scaling for large deployments. This is a large range of ports to balance through your firewall between the client and the Client Access Servers or Client Access array.

To enable only the needed ports for RPC Client Access: Select the “rpc” Virtual Service for Editing. From PORT RANGE LIST, add port range 135 (range 135-135) and 6005 to 59530. Client access with unspecified ports will not be served.
To direct the RPC traffic for RPC Virtual Service to RPC SLB group, select “rpc” and under ASSOCIATE GROUPS, select “group-rpc” and “default” for Eligible Policies.

Equivalent CLI Configuration:

```plaintext
ssl host virtual "exchange-ssl" "eoa-ssl"
slb virtual tcp "rpc" 10.2.40.112 0 arp 0
slb virtual portrange "rpc" 6005 59530
slb virtual portrange "rpc" 135 135
slb policy default "rpc" "group-rpc"
```
6 Configuring the APV Appliance for POP3

POP3 enables a variety of clients to connect to the Exchange Server environment. These include Outlook, Outlook Express, and third-party clients such as Eudora or Mozilla Thunderbird.

The APV appliance can perform the following functions:

- Load Balancing based on Least Connections
- POP3 application health check with basic TCP health check
- SSL offloading to reduce CAS server load

6.1 Configuration Steps

6.1.1 Create POP3 Service Health Check

For a simple check, we will utilize an existing TCP protocol health check for POP3 service.

6.1.2 Create POP3 Real Service

Create a Real Service for each CAS real server. Enter “pop3-cas-1”, “pop3-cas-2”, and “pop3-cas-3” as Real Service Names. Select TCP for Real Service Type. Enter the IP addresses and port 110.

Note: Port 995 can be used for the real service if the CAS server is also running SSL.

![Figure 6-1 Add POP3 Real Service]

Equivalent CLI Configuration:

```plaintext
slb real tcp "pop3-cas-1" 10.10.10.11 110 1000 tcp 3 3
slb real tcp "pop3-cas-2" 10.10.10.12 110 1000 tcp 3 3
slb real tcp "pop3-cas-3" 10.10.10.13 110 1000 tcp 3 3
```
6.1.3 Create POP3 Service Group

POP3 application does not require server affinity. "Least Connections" will be used for load balancing. To configure the POP3 SLB Group, select the feature link Groups from the sidebar. The ADD GROUP window will be displayed.

1. Enter “group-pop3” as the Group Name. Select “Least Connections” for Group Method. Click “Add”. “group-pop3” should be displayed within the GROUPS LIST.

2. The GROUPS LIST table contains all SLB Groups in the unit. Select “group-pop3” and click “Edit” (or double click) to enter individual Group configuration window.

![Figure 6-2 Create SLB Group for POP3 Real Service](image)

3. Add Real Services pop3-cas-1, pop3-cas-2 and pop3-cas-3 to the SLB Group “group-pop3”.

![Figure 6-3 Add Real Service to POP3 SLB Group](image)

Equivalent CLI Configuration:

```
slb group method "group-rpc" lc 10 yes
slb group member "group-pop3" "pop3-cas-1" 1 0
slb group member "group-pop3" "pop3-cas-2" 1 0
slb group member "group-pop3" "pop3-cas-3" 1 0
```

6.1.4 Create POP3 Virtual Service

Selected the feature link Virtual Services from the sidebar. The ADD VIRTUAL SERVICE window will be displayed.
1. Enter “pop3-ssl” for Virtual Service Name. Select TCPS for Virtual Service Type. Enter Virtual Service IP “10.2.40.112” and Port “995”. Click Add. “pop3-ssl” will be displayed within the VIRTUAL SERVICE LIST table.

2. The VIRTUAL SERVICE LIST table contains Virtual Services in the unit. Select “pop3-ssl” and click “Edit” (or double click) to enter the individual Virtual Service configuration window.

Equivalent CLI Configuration:
```
slb virtual tcps "pop3-ssl" 10.2.40.112 995 arp 0
slb policy default "pop3-ssl" "group-pop3"
```

6.1.5 Enable POP3 SSL Offloading

To enable SSL for the SLB Virtual Service “pop3-ssl”, an SSL Virtual Host needs to be added. Go to SSL-> Virtual Hosts -> Add. Enter “exchange-ssl” SSL Virtual Host and select “pop3-ssl” SLB Virtual Service. Click Save.
As the "exchange-ssl" SSL Virtual Host already has its Key/Certificate imported and is Enabled (running), no other setup is needed. Clients will now be able to access **pop3-ssl** Virtual Service.

Equivalent CLI Configuration:

```plaintext
ssl host virtual "exchange-ssl" "pop3-ssl"
```
7 Configuring the APV Appliance for IMAP4

IMAP4 enables a variety of clients to connect to the Exchange Server environment. These include Outlook, Outlook Express, and third-party clients such as Eudora or Mozilla Thunderbird.

The APV appliance can perform the following functions:

- Load Balancing based on Least Connections
- IMAP application health check with basic TCP health check
- SSL offloading (optional)

7.1 Configuration Steps

7.1.1 Create IMAP4 Service Health Check

The default basic TCP protocol health check will be used for this example. Based on Client Access Server setup, an Additional Health Check and/or Script Application Health Check can be added for more reliable application availability check.

7.1.2 Create IMAP4 Real Service

Follow the same instructions that were used to add OWA Real Services to add IMAP Real Services on CAS. We give different Real Service names as “imap-cas-1”, “imap-cas-2” and “imap-cas-3”. The protocol is TCP and the port address is 143.

Equivalent CLI Configuration:

```
slb real tcp "imap-cas-1" 10.10.10.11 143 1000 tcp 3 3
slb real tcp "imap-cas-2" 10.10.10.12 143 1000 tcp 3 3
slb real tcp "imap-cas-3" 10.10.10.13 143 1000 tcp 3 3
```
7.1.3 Create IMAP4 Service Group

IMAP application does not require server affinity; "Least Connections" can be used for load balancing. To configure the IMAP SLB Group, select the feature link Groups from the sidebar. The ADD GROUP window will be displayed.

1. Enter “group-imap” as the Group Name. Select “Least Connections” for the Group Method. Click “Add”. “group-imap” should be displayed within the GROUPS LIST.

2. The GROUPS LIST table contains all SLB Groups in the unit. Select “group-imap” and click "Edit" (or double click) to enter individual Group configuration window.

![Figure 7-2 Create SLB Group for IMAP4](image_url)

3. For GROUP MEMBERS, add Real Service imap-cas-1, imap-cas-2 and imap-cas-3 to the SLB Group “group-imap”.

![Figure 7-3 Add Real Service to IMAP SLB Group](image_url)

Equivalent CLI Configuration:

```
slb group method "group-imap" lc 10 yes
slb group member "group-imap" "imap-cas-1" 1 0
slb group member "group-imap" "imap-cas-2" 1 0
slb group member "group-imap" "imap-cas-3" 1 0
```

7.1.4 Create Secures IMAP4 Virtual Service

Select the feature link Virtual Services from the sidebar. The ADD VIRTUAL SERVICE window will be displayed.
1. Enter “imap4-ssl” for the Virtual Service Name. Select TCP for the Virtual Service Type. Enter Virtual Service IP “10.2.40.12” and Port “993”. Click Add. “imap4-ssl” will be displayed within the VIRTUAL SERVICE LIST table.

2. The VIRTUAL SERVICE LIST table contains Virtual Services in the unit. Select “imap4-ssl” and click “Edit” (or double click) to enter the individual Virtual Service configuration window.

3. Select “group-imap” for Eligible Vlink or Groups and default for Eligible Policies.

Equivalent CLI Configuration:

```
slb virtual tcp "imap4-ssl" 10.2.40.12 993 arp 0
slb policy default "imap4" "group-imap"
```

7.1.5 Enable IMAP4 SSL Offloading

To enable SSL for SLB Virtual Service “imap4-ssl”, an SSL Virtual Host needs to be added. Go to SSL-> Virtual Hosts -> Add. Enter “exchange-ssl” SSL Virtual Host and select the “imap4-ssl” SLB Virtual Service. Click Save.
As the "exchange-ssl" SSL Virtual Host already has its Key/Certificate imported and is Enabled (running) no other setup is needed. Clients will now be able to access the imap4-ssl Virtual Service.

Equivalent CLI Configuration:

```
ssl host virtual "exchange-ssl" "pop3-ssl"
```
8 Configuring the APV Appliance for SMTP (Edge Transport)

In Microsoft Exchange Server 2010, the Edge Transport server role is deployed at organization’s perimeter network. Designed to minimize the attack surface, the Edge Transport server handles all Internet-facing mail flow, which provides SMTP relay and smart host services for the Exchange environment. Additional layers of message protection and security are provided by a series of agents that run on the Edge Transport server and act on messages as they are processed by the message transport components. These agents support the features that provide protection against viruses and spam, and apply transport rules to control message flow.

The APV appliance can spread the load among Edge Transport Servers and detect failure for SMTP high availability.

Also, the APV appliance can provide TLS (STARTTLS) offload to reduce CPU and memory usage on CAS.

8.1 Configuration Steps

Access WebUI; make certain you are in “Config” mode. The left side of the screen is selectable feature links.

8.1.1 Create SMTP (Edge Transport) Service Health Check

The default basic TCP protocol health check will be used for the example. Based on the Edge Transport Server setup, an Additional Health Check and/or Script Application Health Check can be added for more reliable application availability checking.

8.1.2 Create SMTP (Edge Transport) Real Service

Note: SMTP Server Affinity is not required.

Select the feature link Real Services from the sidebar.

1. The default page is Real Services/Health Check Setting. To create the Real Service for SMTP, click “Add Real Service Entry”. The ADD REAL SERVICE ENTRY window will appear. (See Figure 7.1)

 ![Figure 8-1 Real Services/Health Check Setting](image)

2. In the ADD REAL SERVICE ENTRY window, enter “mail-smtp1” for the Real Service Name. Select “tcp” as the Real Service Type. Enter the Real Service IP and Port (25 for SMTP). Click “Save”.

3. Repeat the process for “mail-smtp2”.

Equivalent CLI Configuration:

```
slb real tcp “mail-smtp1” 10.10.20.11 25 1000 tcp 1 3
slb real tcp “mail-smtp2” 10.10.20.12 25 1000 tcp 1 3
```

8.1.3 Create SMTP (Edge Transport) Service Group

Selected the feature link Groups from the sidebar. The ADD GROUP window will be displayed.

1. Enter “group-smtp-et” for the Edge Proxy Group Name. Select “Consistent Hash IP” for the Group Method. Click “Add”. “group-smtp-et” should be displayed within the GROUPS LIST.

2. The GROUPS LIST table contains all SLB Groups in the unit. Select “group-smtp-et” and click “Edit” (or double click) to enter the individual Group configuration window.

3. GROUP MEMBERS: select “mail-smtp1” and “mail-smtp2” from Eligible Reals to Add to the group and click “Save”.

Figure 8-2 Create Real Service for SMTP

Figure 8-3 Create Service Group for SMTP
8.1.4 Create SMTP (Edge Transport) Virtual Service

Select the feature link Virtual Services from the sidebar. The ADD VIRTUAL SERVICE window will be displayed.

1. Enter “smtp” for the Virtual Service Name. Select TCP for the Virtual Service Type. Enter Virtual Service IP “10.2.40.12” and Port “25” (SMTP). Click Add. “smtp” will be displayed within the VIRTUAL SERVICE LIST table.

2. The VIRTUAL SERVICE LIST table contains Virtual Services in the unit. Select “smtp” and click “Edit” (or double click it) to enter the individual Virtual Service configuration window.

3. VIRTUAL SERVICE SETTING: Select “Operate as Transparent Proxy”. For Transparent Proxy, the client IP will be used to make the TCP connection to Edge Transport servers so that Edge Transport servers may use the client IP for its policies (such as for white/black list).

4. ASSOCIATE GROUPS: Select group-smtp-et from Eligible Groups and select default from Eligible Policies. Click Add button to enter. The group-smtp-et will be displayed within the ASSOCIATE GROUPS list.

Equivalent CLI Configuration:

```
slb group method "group-smtp" chi 32
slb group member "group-smtp" "mail-smtp1"
slb group member "group-smtp" "mail-smtp2"
```
8.1.5 Enable SMTP (Edge Transport) SSL Offloading

The APV appliance can be configured to provide SMTP TLS (STARTTLS) access. For the SMTP TLS Virtual Service, the Virtual Service Type will be TCPS and can be port 25 or an unused port.

8.1.6 Misc SMTP Outbound Support

To enable internal SMTP servers to transport emails to other Internet SMTP email servers, NATing will need to be setup on the APV.

Select the Advanced Networking feature tab, click Add NAT Port

Equivalent CLI Configuration:

```
slb virtual tcp "smtp" 10.2.40.112 25 arp 0
slb policy default "smtp" "group-smtp-et"
system mode transparent "smtp"
```
Equivalent CLI Configuration:

```
  nat port 10.2.40.112 10.10.20.8 255.255.255.248 60 10.2.1.1
```
9 Configuring the APV Appliance for Link Redundancy Using LLB

To increase the bandwidth and improve application access availability should the ISP/WAN link go down, a second ISP/WAN link is recommended.

Array APV Link Load Balancing (LLB) is an integrated feature that manages multiple ISP/WAN links through link health check for automatically failover, policy-based routing and link load balancing.

To utilize multiple ISP/WAN links, multiple Virtual Services (redundant) need to be added to facilitate client access through different links (ISP IP) for Exchange 2010, and each IP can be added to the DNS as a different DNS A Record for the same domain name.

<table>
<thead>
<tr>
<th>Record FQDN</th>
<th>Record</th>
<th>Record Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>owa.domain.com</td>
<td>A</td>
<td>10.2.40.112</td>
</tr>
<tr>
<td>owa.domain.com</td>
<td>A</td>
<td>192.168.1.112</td>
</tr>
</tbody>
</table>

SMTP redundancy is built-in with DNS multiple MX records. Multiple MX records for a domain can be added to a DNS server. Each MX record can be assigned with preference.

<table>
<thead>
<tr>
<th>Record FQDN</th>
<th>Record Type</th>
<th>Record Value</th>
<th>MX Pref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain.com</td>
<td>MX</td>
<td>mail1.domain.com.</td>
<td>10</td>
</tr>
<tr>
<td>domain.com</td>
<td>MX</td>
<td>mail2.domai.com.</td>
<td>20</td>
</tr>
<tr>
<td>mail1.domain.com</td>
<td>A</td>
<td>10.2.40.112</td>
<td></td>
</tr>
<tr>
<td>mail2.domain.com</td>
<td>A</td>
<td>192.168.1.112</td>
<td></td>
</tr>
</tbody>
</table>

For outbound email, the APV appliance’s policy-based routing can be used to speed up mail delivery for specific targets and failover when needed.

Following are configuration steps for how to setup multiple link (multi-home) access for the Exchange 2010 mail service.

9.1 Configuration Steps

9.1.1 Add additional port for WAN-2 access

Config -> Basic Networking -> Port

To make port 2 usable for the second WAN link, select “port2” and enter static IP “192.168.1.21” and Static Mask 255.255.255.0.
9.1.2 Add Duplicate Virtual Service for WAN 2 access

This setup is the same as previous examples to create SLB Virtual Services. In this example, we add Virtual Services smtp-wan-2, impa4-ssl-wan2, pop3-ssl-wan2 and owa-ssl-wan2.

The new SLB Virtual Services added for “wan-2” use the same SLB group as the other Virtual Services for WAN 1.
9.1.3 Create LLB Links information

Navigate to Link Load Balance -> OutBound Settings -> Add

Enter a unique name “wan-1” for the Link Name. Enter IP address “10.2.1.1” as the gateway IP address (external router IP address) of this LLB link. Enter “10.2.1.11” as the Health check destination IP. LLB health check will continuously send ICMP requests to the assigned Health Check destination IP address via the link “wan-1”. Enter “10” for the Interval. This is the time interval of the LLB health check. Enter “1” for the Weight of the Link (optional). Assign “10.2.40.111” as the Health Check source IP. This is the IP address assigned as the source IP of the LLB health check IP. Click “Save”.

For WAN link 2, enter a unique name “wan-2” for the Link Name. IP address “192.168.1.11”. Enter “12.12.12.12” as the Health check destination IP (as an example). Enter “10” for the Interval (default). Enter “1” for the Weight (default), and click “Save”.

Figure 9-4 owa-ssl-wan2 (WAN-2)

Figure 9-5 Create LLB Link

Figure 9-6 LLB Link Information
9.1.4 Create LLB DNS record for inbound traffic

Navigate to Link Load Balance -> Inbound Settings -> Add

The ADD DNS ENTRY window will appear. Enter “owa.domain.com” for the Host Name and IP address “10.2.40.115” (this is the IP of the A record) and Port “443”. This is the same as the SLB Virtual Service’s “owa-ssl” IP and Port, and will accessed through the “wan-1” link. Enter “1” for the Weight (default). Click “Save”.

Equivalent CLI Configuration:
```
llb link route "wan-1" 10.2.1.1 10.2.1.11 2 1
llb link route "wan-2" 192.168.1.11 12.12.12.12 10 1
```

Figure 9-7 Create domain name and Service IP

Based on the IP and Port entered, LLB will try to match a local SLB Virtual/Real Service configured in LLB system. If a match is found, LLB will utilize the SLB health check status for the Virtual/Real Service as the corresponding IP status (UP/DOWN). If there is no match, the IP configured is assumed to be “UP” (like normal DNS). LLB DNS only resolves the “UP” IP to the client DNS queries.

The name “owa.domain.com” is the domain name that the user enters in their browser to access the Outlook Web App.

For link “wan-2”, enter “owa.domain.com” for the host name, IP address “192.168.1.115” and Port “443”. Enter “1” for the Weight. Click “Save”.

Figure 9-8 Domain name and Service IP list
Equivalent CLI Configuration:

```
llb dns host "owa.domain.com" 192.168.1.115 1 443
llb dns host "owa.domain.com" 10.2.40.112 1 443
llb dns ttl "owa.domain.com" 60
```
10 Configuring the APV Appliance for Exchange 2010 Site Resilience Using GSLB

Exchange 2010 may be deployed with a backup site in a separate geographic location, with mailbox data synchronized between the two sites and with the ability for one of the sites to take on the entire load if the other fails. Exchange 2010 uses database availability groups (DAGs) to keep multiple copies of your mailboxes on different servers synchronized.

Figure 10-1 Global Load Balancing for Exchange 2010
10.1 Fault Tolerance Configuration

If your mail server fails, you are still able to receive incoming e-mail messages. Most small to medium sized companies will pay their ISPs a monthly fee for storage space on the ISP’s mail servers. For that to happen, a new MX Record will need to be added to their DNS information, pointing to the ISP’s mail server with a higher priority. For example:

<table>
<thead>
<tr>
<th>Record FQDN</th>
<th>Record Type</th>
<th>Record Value</th>
<th>MX Pref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mail.domain.net</td>
<td>MX</td>
<td>mail1.domain.com</td>
<td>10</td>
</tr>
<tr>
<td>mail.domain.net</td>
<td>MX</td>
<td>mail2.domain.com</td>
<td>20</td>
</tr>
</tbody>
</table>

Normally clients from the Internet will access “mail.domain.com” for mailbox access and the request is sent to the Primary site. In the event the Primary site is down, the mail access switches automatically to the Backup Site.

Note: Array GSLB/SDNS supports BIND9. Named and zone file can be imported to APV for DNS use. The zone file can include MX records for client access.

For non-SMTP clients or other Exchange Services, clients may type “owa.domain.com” for mailbox access and initiate a regular DNS query for “owa.domain.com” A record. Normal DNS can resolve “owa.domain.com” to HQ-link1-ip1 or round-robin with HQ-Link2-IP2 so that traffic will stay on the Primary Site. If one link is down, approximately 50% of access will need to be restarted as normal DNS does not care if the Link or Primary Site is down. If the Primary Site is down, to switch to the Backup Site, the client needs to type a different name, such as “owa2.domain.com” to access the backup site to continue to access the email service.

With Array GSLB/SmartDNS, if HQ-link1 (or HQ-link2) goes down, the SmartDNS can resolve “owa.domail.com” to the healthy IP and Exchange traffic will stay on the Primary Site. Also, once both Primary Site links are down (or Exchange is down/disabled under maintenance), SmartDNS at both sites or on the Data Center (backup site) can resolve “owa.domain.com” to the Data Center IP so that mail access can go through the Backup Site. This will provide higher email serviceability and a more user-friendly experience (requires only a single “owa.domail.com”).

10.2 Configuration Steps

10.2.1 Define GSLB/SDNS Members

GSLB/SDNS Members are typically APVs that exchange status with other SDNS members in a GSLB/SDNS network. To create an SDNS Member from the WebUI:

Navigate to Global Load Balance -> General Settings -> Add Member Entry

Type “HQ-APV1” for the Name, select “all” for the Type. Enter “10.2.40.111” for the IP address and “5888” as the Port. Click Save & Add Another to add more “DC-APV1” members.
From SDNS MEMBER SETTING, check the Local Member radius button to assign the member as the Local Member.

Note: SDNS Member Type can be:

- Proxy: serve with SLB function, report VIP/RIP health and load to SDNS members
- DNS: serve with DNS server
- All: Proxy + DNS

10.2.2 Creating GSLB Records

To add domain name A Records for SDNS to manage:

Navigate to Global Load Balance -> Records

Enter "pop3.domain.com" for the Domain Name and type in the IP/port information. Or select the Virtual Service or Real Service from the available list. Click Save.
10.2.3 GSLB/SDNS Disaster Recovery Site Location

Site Location for Disaster Recovery is collection of members. A GSLB/SDNS network can contain multiple sites. To create a Site Location, navigate to:

Global Load Balance -> Topology -> Site (Default) -> Add Site Entry

Enter “Primary-HQ” as the given Site and “100” for Weight. Click Save & Add Another to add the “Backup-DC”.

To add members to the selected site:

Select the “Primary-HQ” site by clicking View. Click Edit Members of the Site and the SDNS SITE’S (Member) LIST window will display.
10.2.4 Creating a DR Group with DNS domain name

Navigate to Global Load Balance -> Topology -> DR Group

Type “mail-pop3” for the Group Name (any unique name) and “pop3.domain.com” for the Domain Name. The Domain name is the name that clients use to access the service. Click Add DR Group. Enter all domain names that will be supported by the DR site.

Array GSLB/SDNS Disaster Recovery supports two Site Groups - “Primary” and “Standby”. To assign sites to Primary Site Group:
1. For Service Group Name mail-pop3, check the “View Sites” radio button. All available “Sites” should show that serve the Group.

2. Select the “Primary” from Select Group/SiteView. Check the To Current Group box for the Primary- HQ Site. Click Save Group Site Setting.

3. Select the “Backup” from Select Group/SiteView. Check the To Current Group box for the Backup- DC Site. Click Save Group Site Setting.

4. Repeat steps 1, 2 and 3 for service groups mail-imap and mail-owa.

![Figure 10-10 Assign DR Sites to the Service Group](image)

You need to do a similar setup for SDNS members on the backup site.

10.2.5 Setup GSLB/SDNS with BIND 9

The APV GSLB/SDNS includes standard BIND9 (named) functionalities. You may import the standard “named.conf” and individual zone files onto the APV to support full DNS functions. Other than DNS A records, all other DNS records are supported by Bind9. For example, to make GSLB/SDNS support MX record resolution, the MX records for a domain need to be added to the normal domain zone file and then import the zone file.

To import, select Global Load Balance -> Records -> Others. You can hit “Browse” to select local files for input to the APV.
Once the BIND 9 Configure file and/or selected zone files are imported, click Restart to restart LocalDNS service to enable the changes.

10.2.6 GSLB/SDNS DR Deployment Verification

To validate that the APV GSLB/SDNS can correctly resolve DNS queries for DNS A and MS records, Windows command tool "nslookup" can be used. On the Windows command line, type "nslookup" to enter the nslookup utility. Type "server 10.2.40.111" to set the APV as the DNS server and "set q=a" (for Query DNS A Record).

Type the domain names that are managed by Array GSLB/SDNS – See the following:

For the Primary-HQ site, it is dual homed to "owa.domain.com" so that two addresses (10.2.40.111 and 192.168.1.115) are returned in round-robin term. The second IP can be disabled if the Link is down or the Virtual Service is disabled (considered down).
To test the MX record support, enter the “nslookup” utility, set the APV as the default DNS server. Type “set q=mx” to set the default DNS query type to MX record and type the domain name. The APV GSLB/SDNS BIND9 will resolve it. See the following:
10.2.7 Log Information

On the APV appliance, each DNS query can be logged with INFO level as the following:

Primary Site Configuration Summary

```plaintext
#link load balancing DNS configuration
llb dns host "owa.domain.com" 192.168.1.115 1 443
llb dns host "owa.domain.com" 10.2.40.112 200 443
llb dns host "pop3.domain.com" 192.168.1.112 1 995
llb dns host "pop3.domain.com" 10.2.40.112 200 995
llb dns host "imap.domain.com" 192.168.1.112 1 993
llb dns host "imap.domain.com" 10.2.40.112 200 993
llb dns ttl "owa.domain.com" 60
llb dns ttl "pop3.domain.com" 60
llb dns ttl "imap.domain.com" 60

#smart DNS configuration
sdns on Check
sdns member attribute "HQ-APV1" 10.2.40.111 5888 all
sdns member attribute "DC-APV1" 192.168.40.111 5888 all
sdns member local "HQ-APV1" 1000
sdns interval heartbeat 2
sdns site location "Backup-DC" 100
sdns site location "Primary-HQ" 100
sdns site member "Primary-HQ" "HQ-APV1"
sdns group dr "mail-pop3" "pop3.domain.com"
sdns group preempt "mail-pop3" 1
sdns group primary "mail-pop3" "Primary-HQ"
sdns group standby "mail-pop3" "Backup-DC"
sdns group dr "mail-imap" "imap.domain.com"
sdns group preempt "mail-imap" 1
sdns group primary "mail-imap" "Primary-HQ" sdns group standby "mail-imap" "Backup-DC" sdns group dr "mail-owa" "owa.domain.com" sdns group preempt "mail-owa" 1
sdns group primary "mail-owa" "Primary-HQ"
sdns group standby "mail-owa" "Backup-DC"
sdns group dr "exchange2010" "eas.domain.com"
sdns group preempt "exchange2010" 1
sdns interval report 30
sdns dps interval send 120
sdns dps interval query 1200
```
Backup Site Configuration Summary

#link load balancing DNS configuration
llb dns host "pop3.domain.com" 10.7.15.72 1 995
llb dns host "imap.domain.com" 10.7.15.72 1 993
llb dns host "owa.domain.com" 10.7.15.72 1 443
llb dns ttl "pop3.domain.com" 60
llb dns ttl "imap.domain.com" 60
llb dns ttl "owa.domain.com" 60

#smart DNS configuration
sdns on Check
sdns member attribute "HQ-APV1" 10.2.40.111 5888 all
sdns member attribute "DC-APV1" 10.7.15.70 5888 all
sdns member local "DC-APV1" 1000
sdns interval heartbeat 2
sdns site location "Backup-DC" 100
sdns site member "Backup-DC" "DC-APV1"
sdns site location "Primary-HQ" 100
sdns group dr "mail-pop3" "pop3.domain.com"
 sdns group preempt "mail-pop3" 1
sdns group primary "mail-pop3" "Primary-HQ"
 sdns group standby "mail-pop3" "Backup-DC"
 sdns group dr "mail-imap" "imap.domain.com"
 sdns group preempt "mail-imap" 1
sdns group primary "mail-imap" "Primary-HQ"
 sdns group standby "mail-imap"
 "Backup-DC" sdns group dr "mail-owa"
 "owa.domain.com" sdns group preempt
 "mail-owa" 1
sdns group primary "mail-owa" "Primary-HQ"
 sdns group standby "mail-owa" "Backup-DC"
sdns interval report 30
sdns dps interval send 120
sdns dps interval query 1200
sdns dps history 9000
sdns dps expire 1
sdns dps method rtt
sdns dps off
sdns dps master off
#NoCheck IP Address
sdns snmp interval 300
sdns snmp version "v2c"
sdns statistics on all
sdns statistics on localdns
sdns persistent timeout 3600
sdns recursion off
11 Summary

APV Application Delivery Controllers deliver all required application delivery functions for optimizing Exchange Server 2010 environments, such as Layer 4-7 server load balancing, link load balancing, high availability/DR, SSL acceleration and offloading, Session Persistence, TCP connection multiplexing, caching and compression – all in a single, easy-to-manage appliance.

Array’s APV Application Delivery Controllers enhance the availability, performance and security characteristics of Microsoft Exchange 2010 solution.
Appendix I

The following describes the mail configurations on the client.

1. Go to Start -> Control Panel -> Mail. The following dialog box is displayed.

![Mail configuration dialog box]

2. Select Prompt for a profile to be used and click Add. Enter “oa_TM” in the displayed dialog box, as shown in the following figure.
3. Click **OK** on the *New Profile* dialog box and **OK** on the *Mail* dialog box. The following dialog box is displayed.
4. Select **Manually configure server settings or additional server types**. Click **Next**. The following dialog box is displayed.

5. Select **Microsoft Exchange or compatible service**. Click **Next**. On the displayed dialog box, enter “MAIL-01.exchange2010.com” as the Server and “array” as User Name, and select **Use Cached Exchange Mode**, as shown in the following figure.
6. Click **Check Name** to make sure that the user name is valid. Then, click **More Settings**. The following dialog box is displayed:
7. Select **Connect using my Local Area Network (LAN)** and **Connect to Microsoft Exchange using HTTP**. Click **Exchange Proxy Settings**. Click **OK**. The following dialog box is displayed:
8. Enter "mail.exchange2010.com" for http://. Select On fast networks, connect using HTTP first, then connect using TCP/IP and On slow networks, connect using HTTP first, then connect using TCP/IP. Click OK. The following dialog box is displayed.

9. Enter your user name and password. Click OK. The following dialog box is displayed:
10. Click **Finish**.

This completes the mail configurations on the client.

Note: When using Outlook for access, select the **oa_TM** profile on the startup of Outlook.
About Array Networks

Array Networks is a global leader in application delivery networking with over 5000 worldwide customer deployments. Powered by award-winning SpeedCore software, Array application delivery, WAN optimization and secure access solutions are recognized by leading enterprise, service provider and public sector organizations for unmatched performance and total value of ownership. Array is headquartered in Silicon Valley, is backed by over 400 employees worldwide and is a profitable company with strong investors, management and revenue growth. Poised to capitalize on explosive growth in the areas of mobile and cloud computing, analysts and thought leaders including Deloitte, IDC and Frost & Sullivan have recognized Array Networks for its technical innovation, operational excellence and market opportunity.